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Prediction of Thermal Diffusion in Binary Mixtures 
of Nonelectrolyte Liquids by the Use 
of Nonequilibrium Thermodynamics I 

A. G. Guy 2 

A derivation based on nonequilibrium thermodynamic leads to this expression 
for the thermal diffusion factor, eT=Mz(h~S-h~S)/RTc~2, where M 2 is the 
molecular weight of the lighter of the two components, h~ 's is the partial excess 
enthalpy of component i, J/g, R is 8.314 J. K -1. tool -t,  T is temperature in K, 
and ~b2 is the thermodynamic correction factor (1 + din ?2/dln X2), where ?2 is 
an activity coefficient and X2 is the mole fraction. The correctness of this 
theoretical prediction is verified for the liquid system ethanol-water at 298 K. 
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1. I N T R O D U C T I O N  

For rate processes (such as diffusion), phenomenological thermodynamics 
is presently viewed [ 1 ] as serving mrely "... to lend credence to the kinetic 
results ..." and as furnishing far less information than do kinetic theoretical 
approaches. The present analysis of thermal diffusion demonstrates, on the 
contrary, that thermodynamics can produce a quantitative description of 
certain phenomena that have not been' successfuly analyzed by mechanistic 
approaches. 

Although thermal diffusion has been studied experimentally in solids, 
liquids, and gases, in the particular case of liquid mixtures, thetheory [2] 
is often unable to predict even the direction of thermal diffusion. In con- 
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trast, the thermodynamic analysis presented here gives quantitative 
agreement with experimental data for the interesting liquid system ethanol- 
water. 

The present analysis for nonelectrolyte liquids has three essential 
features: (i) use of the procedures of nonequilibrium thermodynamics [3]; 
(ii) identification of the partial excess enthalpy, h~ '~, of component i as the 
basic cause of thermal diffusion; and (iii) manipulation of diffusion fluxes 
relative to reference systems. Feature iii, which results in rather complex 
mathematical expressions, is discussed below. 

The enthalpy enters into the formalism of nonequilibrium ther- 
modynamics when the thermodynamic relation [4] 

rd(~i/r ) (d#i ~ h xs dT 
= \ & I T  r clx (1) 

is employed to permit the use of the usual, isothermal values of the specific 
chemical potential, #,., of component i. If, as in the present case, the process 
in question involves only mixing (or unmixing) of the components of a 
solution, enthalpy is the excess quantity h~ ~ [-5]. The use of lowercase h for 
enthalpy indicates that the specific value (per gram) is employed rather 
than the more common value per gram-mole, H. 

Adequate analysis of ordinary diffusion or thermal diffusion in a liquid 
requires two reference systems; the center-of-mass (barycentric) reference 
system for the theoretical analysis and the molecular reference system (or 
equivalent) for interpretation of the experimental data. These reference 
systems are described in the literature [6], and procedures are available for 
converting diffusional fluxes from one system to another. The reference 
system (such as the molecular system) chosen for analysis of experimental 
data is selected to permit accurate evaluation of the particular experiment 
in question. Generally the center-of-mass system is impractical for this 
purpose. On the other hand, as described more fully in Section 2, use 
of the molecular system would hamper the basic theoretical analysis. 
Consequently, although conversion between two reference systems 
complicates the present treatment, there is no practical alternative. 

2. DERIVATION OF AN EXPRESSION FOR 
THE L,.q COEFFICIENTS 

The basic derivations of nonequilibrium thermodynamics [7] involve 
balances of quantities such as mass, momentum, and energy. Therefore, the 
center-of-mass reference system is the logical choice, and its use avoids 
many complications that would be introduced if one of the more common 
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reference systems (e.g, molecular) were employed. Consequently, this sec- 
tion develops equations for use with the center-of-mass system, and Sec- 
tion 3 then obtains useful connections with the molecular reference system. 

The present analysis begins by using Eq. (1) to transform from d#~/dx 
to (d#Jdx)T and identifying h xs as the experimentally measured ther- 
modynamic quantity. As is customary in treatments of diffusion, the 
molecule with the larger molecular weight is denoted component 1. With 
this notation a positive value of Dr corresponds (in most cases) to 
enrichment of component 2 in the high-temperature region. Because the 
particles of a nonelectrolyte liquid are uncharged, the electrochemical 
potential need not be used but can be replaced by the chemical potential. 
The basic phenomenological equations [8] can then be written in the form 
[omitting the subscript T on (d#~/dx)T for simplicity], 

J1 - Lu d#1 L12 d#2 Llq dT 
T dx T dx T2dx  (2) 

J2 = L21 d#1 L22 d#2 L2q dT 
T dx T dx T2 dx (3) 

Lql d#1 Zq2 dlz 2 Lqq dT 
J~q = Jq - h~sJ1  - h'2sJ2 = T dx T dx T 2 dx (4) 

Here L U are phenomenological coefficients, Ji is the flux of component i, 
and Jq is the flux of heat as usually defined and as measured experimen- 
tally. The quantity J'q is often termed the "reduced heat flux." Physically it 
is the usual sum of lattice and electronic contributions minus the enthalpy 
carried by the particles that constitutes the net flux. The units of #i and h xs 
are J . g  1 and those of Ji are g .m  2. s-1. In the center-of-mass system [9] 
J1 + J2 = 0, so the dependent flux can be eliminated by the use of the 
equation, 

Jt = - J 2  (5) 

This relation is valid for both ordinary diffusion and thermal diffusion. 
Because the phenomenological coefficients Llq and L2q are cofficients 

of the "driving force" dT/dx, they play an important role in a process of 
thermal diffusion. A useful expression for these coefficients in terms of h~ s 
and h~ s is now obtained by the following analysis of a process of isothermal 
diffusion. Because both dT/dx and Jq are zero, and in view of Eq. (5) and 
the Gibbs-Duham equation [-10], 

~1 X2a~2 
. . . . .  (6) 
dx XI dx 
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Equations (2) and (3) can be written 

1 L J2=-y( 22-x2 d '2 

1 ( L - (h~-h2~)g2=--~\L ,2- - -~  ,1] dx 

(7) 

(8) 

When the expression for J2 from Eq. (7) is substituted in Eq. (8), the result 
is 

ql = -(h~S-h~ ~) L22---~11L21 (9) 

In view of the Onsager relations, L1r = Lql and L2q = Lu2, Eq. (9) is a step 
toward the desired evaluation of the Liq coefficients in Eqs. (2) and (3). 

Although Eq. (9) was derived for the condition dT/dx=O, it can be 
employed in the presence of a temperature gradient, because in the usual 
formulation of nonequilibrium thermodynamics the phenomenological 
coefficients are not functions of the driving forces. 

For the purpose of eliminating Lul and Lq2 from Eq. (9), one can form 
the sum J 2 -  (X2/X1)J1. When this sum is written using Eqs. (2) and (3), 
the result is 

X2 j = 1 X2 
J2- -~ l l  1 -T(L2'---x11L11) ~-~-I{L'-T~x 22--~11X2L12] "~d#2dx 

1( X2 )dT (10) 
Equation (9) can now be substituted for the factor in parentheses in the 
last term. As before, J1 can be eliminated by means of Eq. (5) and d#ffdx 
by Eq. (6). With these substitutions Eq. (10) becomes 

1 

1 ( 
+-~(h~s-h~ s) L22-- L21 

1 k 1 / 
(11) 

Although J2 is a flux relative to the experimentally inconvenient center-of- 
mass reference system, the following interesting conclusion can be drawn 
from Eq. (11). Thermal diffusion will not occur if the factor (h'~s-h'~ s) is 
zero for either of two reasons. First, this condition could exist 
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(theoretically) for an ideal solution, since both h~ s and h~ s would then be 
zero. Second, a technically important cause of zero thermal diffusion is 
equality of h~ s and h~ s. An example of this condition is discussed in Sec- 
tion 4, where the analogue of Eq. (11) is evaluated quantitatively for the 
ethanol-water liquid system and is shown to give agreement with 
experimental data. 

3. I N C O R P O R A T I O N  OF THE D I F F U S I O N  C O E F F I C I E N T  
INTO THE ANALYSIS 

In this section the coefficients Lij are evaluated in terms of the 
experimentally determined diffusion coefficient for the binary solution 
being considered. The coefficient, D, in question can be determined in a 
process of ordinary (isothermal) diffusion, by use of the molecular reference 
system [ l 1 ] for which 

D dX2 
uY2 - (12) 

f f d x  

where u J2 is the diffusion flux in mol '  m -2" s -1 referred to the molecular 
reference system and V is the molar volume. The symbol D12 is often used 
in place of D in the literature to emphasize the fact that this coefficient 
measures interdiffusion of both component 1 and component 2. The same 
coefficient describes the diffusion flux ,/2 relative to the center-of-mass 
reference system, provided the following equation is employed [12]: 

J2 MlpD dX2 M1D dX2 
M 2  = -- (M-1XI+M2X2) 2 d x -  p(M1XI+M2X2) dx (13) 

Here p is the density, g . m  -3, which can be expressed as ( M I X I +  
M2X2)/~. 

The definition of the molar chemical potential #~ is [13] 

~ = ~ + RTln 7iXi (14) 

where op~ is a convenient reference value, R is the gas constant, and 7i is an 
experimentally determined activity coefficient. Consequently, the specific 
chemical potential of component 2 is 

If2 ~ RT 
~t2 - M2 - M2 +z7-" In Y2X2~vl2 (15) 
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and therefore, 

d[~2 RTcrP2 dX2 
dx - M 2 X  2 dx 

(16) 

where 
din Y2 

~2~--- 1 4 - ~  (17) 
d In X2 

When Eq. (16) is substituted in Eq. (7), the resulting expression can be 
equated to Eq. (13) to obtain the following equation for D: 

( ~ ) (M1XI + M2"Y2) 
D=Rr'(~2 L22- L21 M1M~X2 (18) 

The corresponding relation involving the other pair of coefficients, 
L12- (X2/X1)LH, can be obtained in the following manner. The analogue 
of Eq. (7) for component 1 is 

1( 
J I = - - - T  L12--xI L11 dx (19) 

When the expressions of Eqs. (7) and (19) are substituted in Eq. (5), the 
following useful result is obtained: 

L12 - X  X--22 Lll = - L  (20) 
1 

For convenience the symbol L is used to represent the quantity, 

X2 MI M 2 X2D (21) 
L = L22 -X-~I L21 = Rffqb2(MIX 1 + M2X2) 

where the final expression is obtained from Eq. (18). 
Although Eq. (18) and the other relations given above have been 

derived for isothermal diffusion, they are also valid (as explained in Sec- 
tion 2) when a temperature gradient is present. When Eq. (11) is written in 
terms of L, the result is 

J2 (22) 

Experimental studies of thermal diffusion usually employ a flux uJ2 relative 
to the molecular reference system. For the purpose of obtaining an 
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expression for Dr ,  however, Eq. (22) can be employed since the analysis is 
for the steady-state condition for which J2 = 0 = ,J2. 

The equation employed to define D r  is [14] 

" J 2 = - V  D dx T ~xxJ = --T-~[_ dx D ~ (23) 

The ratio k r =  D r / D  is known as the thermal diffusion ratio, but a more 
widely employed experimental measure of thermal diffusion is the thermal 
difusion factor, a t ,  defined as 

Dr  
a t -  - -  (24) 

D X I  X 2 

The expression for aT in terms of the h x~ will now be obtained by com- 
parison of the expressions within the brackets in Eqs. (22) and (23) for the 
steady-state condition. 

Equation (23) yields the expression 

D r _ T ( d X 2 / d x )  
D d T / d x  (25) 

When Eq. (16) is substituted in Eq. (22), the result can be rearranged into 
the form 

M z ( h ~  ~ - h2 ~) T ( d X 2 / d x )  
(26) 

RT~)2(1/X2 + l/X1) d r / d x  

Comparison of Eqs. (25) and (26) leads to the desired expression for aT in 
terms of the h~ s, 

M2(h,~ ~ - h,~ ~) 
aT - RTqb 2 (27) 

The excess enthalpies, h~ 'S, are the crucial quantities determining the ther- 
mal diffusion behavior of a given mixture. The experimental determination 
of h~ S is distinctly different for a liquid solution than for a mixture of two 
gases. Section 4 is an illustration of the use of Eq. (27) for a binary liquid 
solution. A corresponding treatment of a gaseous mixture will be the sub- 
ject of a future paper. 

4. A P P L I C A T I O N  T O  B I N A R Y - L I Q U I D  S O L U T I O N S  

The system ethanol-water [-lJ] shows interesting thermal-diffusion 
behavior at 298 K (Fig. 1), since a r has a lowest value at Xz=0 .J  and 
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Fig. 1. Thermal diffusion factor ~r for the ethanol-water system at 298 K. 

changes sign near X2=0 .9 .  Extensive data  [16]  exist on molar  excess 
enthalpy as a function of composi t ion  (Fig. 2). Near  the min imum on the 
curve in Fig. 2, a tangent  can be drawn to satisfy the condit ion h~s= h~ s 
that  yields aT----0. The tangent  shown leads to the values, 

H~ ~ = - 625 g-~ 
h~ = M2 18.02 = - 3 4 . 7  J '  (28) 

h~ ~ = n~  s = - 1 5 9 8  -= - 3 4 . 7  J . g-1  (29) 
M1 46.07 

The lowest value of  aT occurs at the point  (near X 2 = 0 . 5 )  where the 
tangent  has the steepest negative slope. The partial excess enthalpies in this 
case are 

- 860 
h.~ s = = - 4 7 . 7  (30) 

18.02 

+ 5 0  
h~s - 46.0~ - +1.1 (31) 

The the rmodynamic  factor  for X 2 = 0 . 5  in this system [17 ]  is about  
~b2 = 0.25; therefore Eq. (27) gives for aT, 

1 8 . 0 2 ( - 4 7 . 7 -  1.1) 
- - - 1 . 4  ( 3 2 )  

a T =  8.314 x 298 x 0.25 
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Fig. 2. Molar excess enthalpy for the ethanol water system at 298 K. 
Tangents to the curve at X2 - 0.5 and X- 2 "~ 0.9 determine the partial molar 
excess enthalpies. 

This excellent agreement of calculated and experimental values of e r  sup- 
ports the view that the theoretical expression given by Eq. (27) applies for 
nonelectrolyte liquids. 

5. D I S C U S S I O N  

The great potential of nonequilibrium thermoynamics,  especially for 
treating steady-state processes, has been recognized for almost 50 years 
[3] .  The essential feature of the present analysis that has resulted in a 
quantitative thermodynamic prediction of the process of thermal diffusion 

840/7/3-7 
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is the incorporation of Eq. (1) in the analysis. The model for the derivation 
of the Liq coefficients in Section 2 is the analogous relation between Leq and 
h e in the case of conduction electrons (component e) undergoing thermal 
diffusion in a metal, a process that leads to the Seebeck effect [18]. The 
analogy is incomplete, however, because the electrochemical potential must 
be employed since the electrons carry a net charge. 
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